Menulis Equation Matematika dengan Latex

Untuk menuliskan rumus/ekspresi matematika dengan menggunakan latex, kita bisa menggunakan perintah latex dengan dua cara berikut ini :

$#latex kode$

[#latex] kode[/#latex]

hapus tanda #

 

Di sini saya akan lebih sering menggunakan yang pertama, yaitu $#latex kode$, karena lebih simple, maksudnya, di akhirannya hanya menggunakan tanda $ dolar saja. Tidak panjang-panjang

Ingat!! Hapus tanda # sebelum kata latex

 

Penulisan Dasar : Subscript, Superscript, Akar Pangkat, Pecahan, dan Sejenisnya

$#latex a-b+c=d$ a-b+c=d
$#latex a \times b=c$ a \times b=c
$#latex a:b=c$ a:b=c
$#latex \frac{a}{b} =c$ \frac{a}{b} =c
$#latex a^b$ a^b
$#latex a^{b+c}$ a^{b+c}
$#latex a_b$ a_b
$#latex a_{b+1}$ a_{b+1}
$#latex a^b_c$ a^b_c
$#latex a^{b+1}_{c+1}$ a^{b+1}_{c+1}
$#latex \sqrt{a}$ \sqrt{a}
$#latex \sqrt{3}{a}$ \sqrt{3}{a}
$#latex \sqrt{ \frac{a^2}{3b^3+1}}$ \sqrt{ \frac{a^2}{3b^3+1}}
$#latex \int \, \iiint \, \oint$ \int \, \iiint \, \oint
$#latex \lim_{n \to \infty} \frac{1}{n}=0$ \lim_{n \to \infty} \frac{1}{n}=0
$#latex \int^b_a x^2 \, dx$ \int^b_a x^2 \, dx
$#latex \sum^{\infty}_{n=1} \frac{1}{n}$ \sum^{\infty}_{n=1} \frac{1}{n}
$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0$ \lim \limits_{n \to \infty} \frac{1}{n}=0
$#latex \int \limits^b_a x^2 \, dx$ \int \limits^b_a x^2 \, dx
$#latex \sum \limits^{\infty}_{n=1} \frac{1}{n}$ \sum \limits^{\infty}_{n=1} \frac{1}{n}
$#latex (a)$ (a)
$#latex [a]$ [a]
$#latex \{ a \}$ \{ a \}
$#latex |a|$ |a|
$#latex \{ a \}$ \{ a \}
$#latex [\frac{a}{b}]$ [\frac{a}{b}]
$#latex \{ \frac{a}{b} \}$ \{ \frac{a}{b} \}
$#latex \left ( \frac{a}{b} \right )$ \left ( \frac{a}{b} \right )
$#latex \left [ \frac{a}{b} \right ]$ \left [ \frac{a}{b} \right ]
$#latex \left \lbrace \frac{a}{b} \right \rbrace$ \left \lbrace \frac{a}{b} \right \rbrace
$#latex \left \langle \frac{a}{b} \right \rangle$ \left \langle \frac{a}{b} \right \rangle
$#latex \left \vert \frac{a}{b} \right \vert$ \left \vert \frac{a}{b} \right \vert
$#latex \left \Vert \frac{a}{b} \right \Vert$ \left \Vert \frac{a}{b} \right \Vert
$#latex \left \lfloor \frac{a}{b} \right \rfloor$ \left \lfloor \frac{a}{b} \right \rfloor
$#latex \left \lceil \frac{a}{b} \right \rceil$ \left \lceil \frac{a}{b} \right \rceil
$#latex \downarrow$ \downarrow
$#latex \uparrow$ \uparrow
$#latex \updownarrow$ \updownarrow

Ingat!! Hapus tanda # sebelum kata latex

 

Penulisan Simbol atau Tanda Hubung atau Sejenisnya

$#latex \bar{A}$ \bar{A}
$#latex \hat{a}$ \hat{a}
$#latex \vec{c}$ \vec{c}
$#latex \overline{xy}$ \overline{xy}
$#latex \widehat{xy}$ \widehat{xy}
$#latex \overrightarrow{xy}$ \overrightarrow{xy}
$#latex \overleftarrow{xy}$ \overleftarrow{xy}
$#latex \underline{xy}$ \underline{xy}
$#latex \overset{a}{b}$ \overset{a}{b}
$#latex \underset{a}{b}$ \underset{a}{b}
$#latex {a \atop b}$ {a \atop b}
$#latex {a \choose b}$ {a \choose b}
$#latex \overbrace {a+a+ \cdots+a}^{\mbox{n kali}}$ \overbrace {a+a+ \cdots+a}^{\mbox{n kali}}
$#latex \underbrace{a+a+ \cdots +a}_{\mbox{n kali}}$ \underbrace{a+a+ \cdots +a}_{\mbox{n kali}}
$#latex \begin{cases} n, & \mbox{if} n\mbox{ is even} \\ 2n, & \mbox{if} n\mbox{ is odd} \end{cases} $ \begin{cases} n, & \mbox{if} n\mbox{ is even} \\ 2n, & \mbox{if} n\mbox{ is odd} \end{cases}
$#latex \xleftarrow{a+b}$ \xleftarrow{a+b}
$#latex \xrightarrow{a+b}$ \xrightarrow{a+b}
$#latex \pm$ \pm
$#latex \mp$ \mp
$#latex \div$ \div
$#latex \otimes$ \otimes
$#latex \oplus$ \oplus
$#latex \to$ \to
$#latex \gets$ \gets
$#latex \iff$ \iff
$#latex \cdot$ \cdot
$#latex \dots$ \dots
$#latex \cdots$ \cdots
$#latex \ne$ \ne
$#latex \equiv$ \equiv
$#latex \not$ \not
$#latex \le$ \le
$#latex \ge$ \ge
$#latex \sim$ \sim
$#latex \approx$ \approx
$#latex \simeq$ \simeq
$#latex \cong$ \cong
$#latex \cap$ \cap
$#latex \cup$ \cup
$#latex \in$ \in
$#latex \ni$ \ni
$#latex \notin$ \notin
$#latex \forall$ \forall
$#latex \exists$ \exists
$#latex \nexists$ \nexists
$#latex \wedge$ \wedge
$#latex \vee$ \vee
$#latex \bigwedge$ \bigwedge
$#latex \bigvee$ \bigvee
$#latex \varnothing$ \varnothing
$#latex \complement$ \complement
$#latex \subset$ \subset
$#latex \subseteq$ \subseteq
$#latex \subsetneq$ \subsetneq
$#latex \supset$ \supset
$#latex \supseteq$ \supseteq
$#latex \supsetneq$ \supsetneq
$#latex \bigcap$ \bigcap
$#latex \bigcup$ \bigcup
$#latex \circ$ \circ
$#latex \triangle$ \triangle
$#latex \triangledown$ \triangledown
$#latex \angle$ \angle

Ingat!! Hapus tanda # sebelum kata latex

 

Tambahan

 

$#latex \pi$ \pi
$#latex \phi$ \phi
$#latex \rho$ \rho
$#latex \sigma$ \sigma
$#latex \epsilon$ \epsilon
$#latex \delta$ \delta
$#latex \theta$ \theta
$#latex \kappa$ \kappa
$#latex \alpha$ \alpha
$#latex \beta$ \beta
$#latex \gamma$ \gamma
$#latex \omega$ \omega
$#latex \zeta$ \zeta
$#latex \eta$ \eta
$#latex \iota$ \iota
$#latex \lambda$ \lambda
$#latex \mu$ \mu
$#latex \nu$ \nu
$#latex \xi$ \xi
$#latex \tau$ \tau
$#latex \upsilon$ \upsilon
$#latex \chi$ \chi
$#latex \psi$ \psi

 

Warna dan ukuran

&fg=aa0000&s=2 , s adalah ukuran -4, -3, -2, -1, 1, 2, 3, 4

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=aa0000&s=1$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00aa00&s=2$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=0000aa&s=3$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00ff00&s=4$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00af00&s=-1$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=aaff00&s=-2$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=abcdef&s=-3$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00af0a&s=-4$

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

 

$#latex \begin{array}{ccc} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

$#latex \begin{array}{lcr} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

$#latex \begin{array}{rcl} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

 

\begin{array}{ccc} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

\begin{array}{lcr} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

\begin{array}{rcl} (x+y)(x-y) & = & x^2 - xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

 

Tentu saja postingan ini akan ditambah terus seiring penulis menulis simbol matematika dengan latex yang terbaru. Semoga bermanfaat.

Tanya Jawab Anda memiliki pertanyaan seputar artikel yang dibahas atau topik lain? Silahkan ajukan pertanyaan Anda melalui program Tanya Nusagates atau posting di Forum Nusagates.
Konsultasi terkait tugas sekolah atau tugas kuliah juga diperbolehkan.
Back to top button
Close
Close