Menulis Equation Matematika dengan Latex

Untuk menuliskan rumus/ekspresi matematika dengan menggunakan latex, kita bisa menggunakan perintah latex dengan dua cara berikut ini :

$#latex kode$

[#latex] kode[/#latex]

hapus tanda #

 

Di sini saya akan lebih sering menggunakan yang pertama, yaitu $#latex kode$, karena lebih simple, maksudnya, di akhirannya hanya menggunakan tanda $ dolar saja. Tidak panjang-panjang

Ingat!! Hapus tanda # sebelum kata latex

 

Penulisan Dasar : Subscript, Superscript, Akar Pangkat, Pecahan, dan Sejenisnya

$#latex a-b+c=d$ a-b+c=d
$#latex a \times b=c$ a \times b=c
$#latex a:b=c$ a:b=c
$#latex \frac{a}{b} =c$ \frac{a}{b} =c
$#latex a^b$ a^b
$#latex a^{b+c}$ a^{b+c}
$#latex a_b$ a_b
$#latex a_{b+1}$ a_{b+1}
$#latex a^b_c$ a^b_c
$#latex a^{b+1}_{c+1}$ a^{b+1}_{c+1}
$#latex \sqrt{a}$ \sqrt{a}
$#latex \sqrt{3}{a}$ \sqrt{3}{a}
$#latex \sqrt{ \frac{a^2}{3b^3+1}}$ \sqrt{ \frac{a^2}{3b^3+1}}
$#latex \int \, \iiint \, \oint$ \int \, \iiint \, \oint
$#latex \lim_{n \to \infty} \frac{1}{n}=0$ \lim_{n \to \infty} \frac{1}{n}=0
$#latex \int^b_a x^2 \, dx$ \int^b_a x^2 \, dx
$#latex \sum^{\infty}_{n=1} \frac{1}{n}$ \sum^{\infty}_{n=1} \frac{1}{n}
$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0$ \lim \limits_{n \to \infty} \frac{1}{n}=0
$#latex \int \limits^b_a x^2 \, dx$ \int \limits^b_a x^2 \, dx
$#latex \sum \limits^{\infty}_{n=1} \frac{1}{n}$ \sum \limits^{\infty}_{n=1} \frac{1}{n}
$#latex (a)$ (a)
$#latex [a]$ [a]
$#latex \{ a \}$ \{ a \}
$#latex |a|$ |a|
$#latex \{ a \}$ \{ a \}
$#latex [\frac{a}{b}]$ [\frac{a}{b}]
$#latex \{ \frac{a}{b} \}$ \{ \frac{a}{b} \}
$#latex \left ( \frac{a}{b} \right )$ \left ( \frac{a}{b} \right )
$#latex \left [ \frac{a}{b} \right ]$ \left [ \frac{a}{b} \right ]
$#latex \left \lbrace \frac{a}{b} \right \rbrace$ \left \lbrace \frac{a}{b} \right \rbrace
$#latex \left \langle \frac{a}{b} \right \rangle$ \left \langle \frac{a}{b} \right \rangle
$#latex \left \vert \frac{a}{b} \right \vert$ \left \vert \frac{a}{b} \right \vert
$#latex \left \Vert \frac{a}{b} \right \Vert$ \left \Vert \frac{a}{b} \right \Vert
$#latex \left \lfloor \frac{a}{b} \right \rfloor$ \left \lfloor \frac{a}{b} \right \rfloor
$#latex \left \lceil \frac{a}{b} \right \rceil$ \left \lceil \frac{a}{b} \right \rceil
$#latex \downarrow$ \downarrow
$#latex \uparrow$ \uparrow
$#latex \updownarrow$ \updownarrow

Ingat!! Hapus tanda # sebelum kata latex

 

Penulisan Simbol atau Tanda Hubung atau Sejenisnya

$#latex \bar{A}$ \bar{A}
$#latex \hat{a}$ \hat{a}
$#latex \vec{c}$ \vec{c}
$#latex \overline{xy}$ \overline{xy}
$#latex \widehat{xy}$ \widehat{xy}
$#latex \overrightarrow{xy}$ \overrightarrow{xy}
$#latex \overleftarrow{xy}$ \overleftarrow{xy}
$#latex \underline{xy}$ \underline{xy}
$#latex \overset{a}{b}$ \overset{a}{b}
$#latex \underset{a}{b}$ \underset{a}{b}
$#latex {a \atop b}$ {a \atop b}
$#latex {a \choose b}$ {a \choose b}
$#latex \overbrace {a+a+ \cdots+a}^{\mbox{n kali}}$ \overbrace {a+a+ \cdots+a}^{\mbox{n kali}}
$#latex \underbrace{a+a+ \cdots +a}_{\mbox{n kali}}$ \underbrace{a+a+ \cdots +a}_{\mbox{n kali}}
$#latex \begin{cases} n, & \mbox{if} n\mbox{ is even} \\ 2n, & \mbox{if} n\mbox{ is odd} \end{cases} $ \begin{cases} n, & \mbox{if} n\mbox{ is even} \\ 2n, & \mbox{if} n\mbox{ is odd} \end{cases}
$#latex \xleftarrow{a+b}$ \xleftarrow{a+b}
$#latex \xrightarrow{a+b}$ \xrightarrow{a+b}
$#latex \pm$ \pm
$#latex \mp$ \mp
$#latex \div$ \div
$#latex \otimes$ \otimes
$#latex \oplus$ \oplus
$#latex \to$ \to
$#latex \gets$ \gets
$#latex \iff$ \iff
$#latex \cdot$ \cdot
$#latex \dots$ \dots
$#latex \cdots$ \cdots
$#latex \ne$ \ne
$#latex \equiv$ \equiv
$#latex \not$ \not
$#latex \le$ \le
$#latex \ge$ \ge
$#latex \sim$ \sim
$#latex \approx$ \approx
$#latex \simeq$ \simeq
$#latex \cong$ \cong
$#latex \cap$ \cap
$#latex \cup$ \cup
$#latex \in$ \in
$#latex \ni$ \ni
$#latex \notin$ \notin
$#latex \forall$ \forall
$#latex \exists$ \exists
$#latex \nexists$ \nexists
$#latex \wedge$ \wedge
$#latex \vee$ \vee
$#latex \bigwedge$ \bigwedge
$#latex \bigvee$ \bigvee
$#latex \varnothing$ \varnothing
$#latex \complement$ \complement
$#latex \subset$ \subset
$#latex \subseteq$ \subseteq
$#latex \subsetneq$ \subsetneq
$#latex \supset$ \supset
$#latex \supseteq$ \supseteq
$#latex \supsetneq$ \supsetneq
$#latex \bigcap$ \bigcap
$#latex \bigcup$ \bigcup
$#latex \circ$ \circ
$#latex \triangle$ \triangle
$#latex \triangledown$ \triangledown
$#latex \angle$ \angle

Ingat!! Hapus tanda # sebelum kata latex

 

Tambahan

 

$#latex \pi$ \pi
$#latex \phi$ \phi
$#latex \rho$ \rho
$#latex \sigma$ \sigma
$#latex \epsilon$ \epsilon
$#latex \delta$ \delta
$#latex \theta$ \theta
$#latex \kappa$ \kappa
$#latex \alpha$ \alpha
$#latex \beta$ \beta
$#latex \gamma$ \gamma
$#latex \omega$ \omega
$#latex \zeta$ \zeta
$#latex \eta$ \eta
$#latex \iota$ \iota
$#latex \lambda$ \lambda
$#latex \mu$ \mu
$#latex \nu$ \nu
$#latex \xi$ \xi
$#latex \tau$ \tau
$#latex \upsilon$ \upsilon
$#latex \chi$ \chi
$#latex \psi$ \psi

 

Warna dan ukuran

&fg=aa0000&s=2 , s adalah ukuran -4, -3, -2, -1, 1, 2, 3, 4

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=aa0000&s=1$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00aa00&s=2$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=0000aa&s=3$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00ff00&s=4$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00af00&s=-1$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=aaff00&s=-2$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=abcdef&s=-3$

$#latex \lim \limits_{n \to \infty} \frac{1}{n}=0&fg=00af0a&s=-4$

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

\lim \limits_{n \to \infty} \frac{1}{n}=0

 

 

$#latex \begin{array}{ccc} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

$#latex \begin{array}{lcr} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

$#latex \begin{array}{rcl} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}$

 

\begin{array}{ccc} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

\begin{array}{lcr} (x+y)(x-y) & = & x^2-xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

\begin{array}{rcl} (x+y)(x-y) & = & x^2 - xy + yx-y^2 \\ & = & x^2-y^2 \\ (x+y)^2 & = & x^2 + 2xy + y^2 \end{array}

 

 

Tentu saja postingan ini akan ditambah terus seiring penulis menulis simbol matematika dengan latex yang terbaru. Semoga bermanfaat.